doubling

doubling

In mathematics, a metric space X with metric d is said to be doubling if there is some doubling constant M > 0 such that for any x ∈ X and r > 0, it is possible to cover the ball B(x, r) = {y | d(x, y) < r} with the union of at most M balls of radius r/2. The base-2 logarithm of M is called the doubling dimension of X. Euclidean spaces





R


d




{\displaystyle \mathbb {R} ^{d}}

equipped with the usual Euclidean metric are examples of doubling spaces where the doubling constant M depends on the dimension d. For example, in one dimension, M = 3; and in two dimensions, M = 7. In general, Euclidean space





R


d




{\displaystyle \mathbb {R} ^{d}}

has doubling dimension



Θ
(
d
)


{\displaystyle \Theta (d)}

.

View More On Wikipedia.org

OFFICIAL SPONSORS

Electrical Goods - Electrical Tools - Brand Names Electrician Courses Green Electrical Goods PCB Way Electrical Goods - Electrical Tools - Brand Names Pushfit Wire Connectors Electric Underfloor Heating Electrician Courses
These Official Forum Sponsors May Provide Discounts to Regular Forum Members - If you would like to sponsor us then CLICK HERE and post a thread with who you are, and we'll send you some stats etc

YOUR Unread Posts

This website was designed, optimised and is hosted by untold.media Operating under the name Untold Media since 2001.
Back
Top