At AC power frequencies the skin depth in copper is about 9mm, so any conductor that is less than around 20mm diameter it has quite a small effect. Somewhere there will be equations to allow its computation for different conductors but most folks in engineering take the easy route of getting a feel for when you can ignore something, and ignoring it.
For example it is unlikely you will know any AC system parameter to better than 5% uncertainty, let alone 1%, so once effects get down to the 5%-ish region they can be often ignored for most purposes.
The temperature coefficient for copper is around 0.00393 so each 10C increase in temperature has a 3.93% increase in resistance. Which is about 4%. Which is why the UK regs have a 0.8 factor for going from measured at 20C to Zs value working at 70C.
Yes, our regs do have detailed formulae for non-standard cases such as measurement very cold/hot and/or operation at unusually high temperatures, but that vast majority of industrial cases are just like commercial and domestic in the 20C test & 70C assumed max operation is perfectly applicable.
In terms of generic AC values we have tables in the regulations with the values to assume. For example this if for single cables in various configurations giving both the DC and AC "resistance" values (more correctly the voltage drop due to cable impedance):
View attachment 84241